Industrial Refrigeration
For Food Preservation

Dr. Apichit L. Pana (Ph.D.(Hon), ME)
Fellow – ASHRAE
Distinguish Lecturer (DL)
and 2009-2011 Student Activities Committee of
ASHRAE USA

Sawasdee Ka

This ASHRAE Distinguished Lecturer is brought to you by the Society Chapter Technology Transfer Committee
Volunteer!
Become A Future Leader in ASHRAE - Write The Next Chapter In Your Career

ASHRAE Members who attend their monthly chapter meeting become leaders and bring information and technology back to their job.

You are needed for:
- Membership Promotion
- Research Promotion
- Student Activities
- Chapter Technology Transfer
- Technical Committees

Find Your Place in ASHRAE! Visit ashrae.org.

Outlines
- Product Lost
- Fruits & Vegetables
- Fishery

PRODUCT LOST
Product Lost

Causes:-
• Weight loss in storage and freezing
• Chilling injury
• Freezing injury
• Ammonia injury

Percentage of Weight (Moisture) Loss from Fruits and Vegetable that Affects Produce Quality after Harvest

<table>
<thead>
<tr>
<th>Product</th>
<th>Weight Loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beans (broad, runner, snap)</td>
<td>6.0, 5.0, 4.0</td>
</tr>
<tr>
<td>Broccoli</td>
<td>6.0</td>
</tr>
<tr>
<td>Lettuce</td>
<td>3.7</td>
</tr>
<tr>
<td>Onion</td>
<td>10.0</td>
</tr>
<tr>
<td>Potatoes</td>
<td>7.0</td>
</tr>
<tr>
<td>Spinach</td>
<td>7.0</td>
</tr>
<tr>
<td>Sweet Corn</td>
<td>7.0</td>
</tr>
<tr>
<td>Tomatoes</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Weight loss during storage

Factors:-
• Room temperature & temperature fluctuation
• Humidity
• Air flow over the product
• Radiation effects of lighting
• Shape and size of the product
• Type of wrapper
Weight lost during freezing

Factors:
- Type of freezer
- Freezing time
- Type of product
- Air velocity
- Freezer operating conditions

<table>
<thead>
<tr>
<th>Product</th>
<th>Freezing Method</th>
<th>% weight loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQF shrimp</td>
<td>Air blast</td>
<td>2 to 2.5</td>
</tr>
<tr>
<td>IQF haddock</td>
<td>Air blast</td>
<td>1.2</td>
</tr>
<tr>
<td>IQF haddock</td>
<td>Cryogenic – CO2</td>
<td>0.6</td>
</tr>
<tr>
<td>IQF products</td>
<td>Cryogenic – N2</td>
<td>0.3 to 0.8</td>
</tr>
<tr>
<td>Tray of fillets</td>
<td>Air blast</td>
<td>1.0</td>
</tr>
<tr>
<td>Large fish or blocks</td>
<td>Air blast</td>
<td>0.5</td>
</tr>
<tr>
<td>Blocks of fish</td>
<td>Contact freezer metal to fish contact</td>
<td>0</td>
</tr>
</tbody>
</table>
FRUITS & VEGETABLES

Fruits & Vegetables
- Pre-cooling method
- Green Bean & Soya Bean
- Shallot (Red Onion)
- Banana Ripening
- Mango
- CA

Vegetables Postharvest General Flow
Fruits Postharvest General Flow at Packinghouse

- Load to Pre-cooler
- Pre-cooling @ desired condition
- Unload from Pre-cooler
- Packing

Load into wax m/c
Water spray cleaning
Inspection
Water spray brushing
Surface water removal
Wax emulsion coating with brush & spray
Drying with fan & heater
Grading by size
Packing
Cold storage
Transport

Fresh fruits

Ripening @ desired condition
Unload from ripening room
Packing

Fruits & Vegetables

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Max. transit & shelf life (Days)</th>
<th>Opt. transit temp. (°C)</th>
<th>Highest freezing temp. (°C)</th>
<th>SRH</th>
<th>Air Change (cfm)</th>
<th>Ethylene Production Rate</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beans, Green</td>
<td>10-14</td>
<td>7.2</td>
<td>5.0-7.2</td>
<td>90-95</td>
<td>45</td>
<td>Low</td>
<td>M</td>
</tr>
<tr>
<td>Broccoli</td>
<td>10-14</td>
<td>0</td>
<td>0.1-1.1</td>
<td>90-95</td>
<td>20</td>
<td>VL</td>
<td>High</td>
</tr>
<tr>
<td>Cabbage (White)</td>
<td>90-180</td>
<td>0</td>
<td>0.1-1.1</td>
<td>95-100</td>
<td>45</td>
<td>VL</td>
<td>High</td>
</tr>
<tr>
<td>Cucumber, Filled</td>
<td>30-140</td>
<td>0</td>
<td>0.1-1.1</td>
<td>95-100</td>
<td>45</td>
<td>VL</td>
<td>High</td>
</tr>
<tr>
<td>Lettuce</td>
<td>8-12</td>
<td>0</td>
<td>0.1-1.1</td>
<td>90-95</td>
<td>45</td>
<td>Low</td>
<td>M</td>
</tr>
<tr>
<td>Onions, Green</td>
<td>4-7</td>
<td>0</td>
<td>0.1-1.1</td>
<td>95-100</td>
<td>20</td>
<td>VL</td>
<td>Low</td>
</tr>
<tr>
<td>Onions, Dry</td>
<td>30-180</td>
<td>0</td>
<td>0.1-1.1</td>
<td>65-75</td>
<td>20</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Spinach</td>
<td>10-18</td>
<td>0</td>
<td>0.1-1.1</td>
<td>95-100</td>
<td>45</td>
<td>VL</td>
<td>High</td>
</tr>
<tr>
<td>Strawberries</td>
<td>3-7</td>
<td>85</td>
<td>0.1-1.1</td>
<td>90-95</td>
<td>20</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Sweet Corn</td>
<td>7-11</td>
<td>0</td>
<td>0.1-1.1</td>
<td>90-95</td>
<td>15</td>
<td>VL</td>
<td>Low</td>
</tr>
<tr>
<td>Tomatoes, breaker to light pink</td>
<td>7-14</td>
<td>100</td>
<td>0.1-1.1</td>
<td>90-95</td>
<td>15</td>
<td>M</td>
<td>High</td>
</tr>
</tbody>
</table>
Pre-cooling Methods for Fresh Produce

- Top Icing
- Hydro Cooling
- Hydair Cooling (air + cold water spray), Wet Air Cooling
- Air Cooling
 - Room Cooling
 - Force Air Cooling
- Vacuum cooling

Top Icing

Hydro Cooling
Hydro Cooling

Continuous Flow Shower Type Hydrocooler

Hydro Cooling

Batch Hydrocooler

Hydro Cooling

Continuous Flow Immersion Type Hydrocooler
Hydro Cooling

- Thermal Storage Immersion Hydrocooler

Hydair Cooling System, Wet Air Cooling System

- Wet Air Cooler
- Cold, Humid Air
- Produce
- Cold Room

Hydair Cooling System, Wet Air Cooling System

- Evaporative Condenser
- Compressor
- Ice Chiller & Water Tank
Hydro-Force Cooler (HAC)

Evaporator
Circulate Pump
Drift Eliminator
Air In
Water Spray
High Humidity Air Supply
Room Cooling
Recommended Temperature (TD) for Four Classes of Foods (Forced Air Unit Coolers)

<table>
<thead>
<tr>
<th>Class</th>
<th>TD (°F)</th>
<th>RH</th>
<th>Suitable for</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7-9°F</td>
<td>90%</td>
<td>Fruits, vegetables, flowers, unpacked ice, chill room</td>
</tr>
<tr>
<td>2</td>
<td>10-12°F</td>
<td>80 - 85%</td>
<td>General cool room, packed products</td>
</tr>
<tr>
<td>3</td>
<td>12-16°F</td>
<td>65 - 80%</td>
<td>Beer, wine, pharmaceuticals, short term packaged products, tomatoes, onions, and tough skin fruits e.g. melons</td>
</tr>
<tr>
<td>4</td>
<td>17-22°F</td>
<td>50 - 65%</td>
<td>Processing rooms, cutting rooms, candies, loading docks</td>
</tr>
</tbody>
</table>

Forced-Air Cooling

Tunnel type FAC using cold-wall system

Force Air Cooling

Vacuum Cooling

Some vegetables that can be vacuum cooled:
- All leafy vegetables
- Any type of lettuce
- Asparagus
- Bell pepper
- Bok choy
- Brussel sprouts
- Cabbage
- Carrots
- Cauliflower
- Celery
- Cucumbers
- Endive
- Escarole
- Green peas
- Leeks
- Mushrooms
- Oriental vegetables
- Parsley
- Prepack coleslaw
- Prepack spinach
- Radishes
- Romaine
- Snap beans
- Spinach
- Squash

Compare Cooling Methods for Fruits and Vegetables

<table>
<thead>
<tr>
<th></th>
<th>Room Cooling</th>
<th>Vacuum Cooling</th>
<th>FAC</th>
<th>Hydro Cooling</th>
<th>Top/Liquid icing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical cooling time (hr)</td>
<td>20 to 100</td>
<td>0.3 to 2.0</td>
<td>1 to 10</td>
<td>0.1 to 1.0</td>
<td>0.1 to 0.3</td>
</tr>
<tr>
<td>Product moisture loss (%)</td>
<td>0.1 to 2.0</td>
<td>2.0 to 4.0</td>
<td>0.1 to 2.0</td>
<td>0.1 to 0.5</td>
<td>No data</td>
</tr>
<tr>
<td>Water contact with product</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes, unless bagged</td>
</tr>
<tr>
<td>Potential for decay contamination</td>
<td>Low</td>
<td>none</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Capillarity</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Energy efficiency</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Water-resistant packing needed</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Versatility</td>
<td>No</td>
<td>Common</td>
<td>Sometimes</td>
<td>Rarely done</td>
<td>Common</td>
</tr>
<tr>
<td>Feasibility of in-line cooling</td>
<td>No</td>
<td>No</td>
<td>Rarely done</td>
<td>Yes</td>
<td>Rarely done</td>
</tr>
</tbody>
</table>
Recommended Cooling Methods for Fruits and Vegetables

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Vacuum Cooling</th>
<th>Room Cooling</th>
<th>Forced Air Cooling</th>
<th>Hydro Cooling</th>
<th>Top/liquid icing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beans/snap</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Broccoli</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabbage</td>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Cantaloupe</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Carrot</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Celery</td>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Cucumbers</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Egg Plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Onions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Vacuum Cooling</th>
<th>Room Cooling</th>
<th>Forced Air Cooling</th>
<th>Hydro Cooling</th>
<th>Top/liquid icing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lettuce</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potatoes</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spinach</td>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Strawberries</td>
<td></td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Sweet corn</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Sweet potatoes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomatoes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Green Bean & Soya Bean
Green Been & Soya Been

<table>
<thead>
<tr>
<th>Max. transit (Days)</th>
<th>Opt. transit temp. (°C)</th>
<th>Highest freezing temp. (°C)</th>
<th>Recommended container temp. accpeted (°C)</th>
<th>Shelf</th>
<th>Air change (cfm)</th>
<th>Ethylene Production Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beans, Green</td>
<td>~10-14</td>
<td>~7.2</td>
<td>~0.7</td>
<td>~5.0-7.2</td>
<td>~90-95</td>
<td>~45</td>
</tr>
</tbody>
</table>

Green Been & Soya Been

- Weighing
- Quality Control (Sampling)
- Bulk Store (Wet Air, FAC)
- Blowing Foreign Material
- Washing (Sand, Mud)
- Sorting, Size Grading
- Trimming (Tail, Head)
- Cleaning
- Blanching
- Quick Chilling (By Chilled Water)
- Fluidize Bed Freezing (IQF)
- Weighing & Packing
- Cold Store
- Export

Shallot (Red Onion) Processing
Fruits & Vegetables

<table>
<thead>
<tr>
<th></th>
<th>Max. transit & shelf life (Days)</th>
<th>Opt. transit temp. (°C)</th>
<th>Highest freezing temp. (°C)</th>
<th>Opt. storage temp., setpoint (°C)</th>
<th>Rh.</th>
<th>Air Change (cfm)</th>
<th>Ethylene Production Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onions</td>
<td>7-14</td>
<td>0</td>
<td>-0.9</td>
<td>0-1.1</td>
<td>95-100</td>
<td>20</td>
<td>Very Low</td>
</tr>
<tr>
<td>Dry</td>
<td>30-360</td>
<td>0</td>
<td>-0.8</td>
<td>0-1.1</td>
<td>65-75</td>
<td>20</td>
<td>Medium</td>
</tr>
</tbody>
</table>

HARVEST

- Fully mature, well colored, and 1-2 inches in diameter.
- Cure in the sunlight, sacks, or bins, or under cover.
- Shallots are usually hand cleaned, topped and put into bags or bins for storage after the necks and bulbs are well cured.

Storage

- Store at 0–1 °C and 60-70% RH.
- Should not be placed into deep piles.
- Good air movement is critical.
- 8 to 10 months.
Postharvest Treatments

• Maleic hydrazide (Royal MH-30)
 • Two lb a.i. per acre when bulbs are
 • fully mature with soft necks and 5 to 8 green leaves
 • or approximately 50% of the tops have fallen, but are
 still green.
 • Applied at temperatures below 80 to 85° F.
 • Suggest to use a spray adjuvant in some arid
 regions.
 • Avoid early sprays before maturity.
 • Do not treat seed shallots.

Banana Ripening

Fruit Ripening

• What is Fruit Ripening?
 - Climacteric Fruits
 - Non-Climacteric Fruits
Climacteric Fruits

- Banana
- Apricot
- Papaya
- Kiwi
- Apple
- Guava
- Plum
- Figs
- Mango
- Pear
- Papaya

Non-Climacteric Fruits

- Pomegranate
- Raspberry
- Blackberry
- Strawberry
- Watermelon
- Litchi
- Grape
- Mousambi

Ripening Conditions for Some Kinds of Fruits

<table>
<thead>
<tr>
<th>Fruit</th>
<th>Exposure time (hours)</th>
<th>Range of ripening temperatures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avocado</td>
<td>8-48</td>
<td>59-68°F / 15-20°C</td>
</tr>
<tr>
<td>Banana</td>
<td>24-48</td>
<td>58-65°F / 14-18°C</td>
</tr>
<tr>
<td>Kiwifruit</td>
<td>12-24</td>
<td>54-72°F / 12-22°C</td>
</tr>
<tr>
<td>Mango</td>
<td>24-48</td>
<td>68-72°F / 20-22°C</td>
</tr>
<tr>
<td>Pear</td>
<td>24-48</td>
<td>68-72°F / 20-22°C</td>
</tr>
<tr>
<td>Tomato</td>
<td>24-72</td>
<td>65-68°F / 18-20°C</td>
</tr>
</tbody>
</table>

1 Shorter duration for more mature fruit
2 Faster ripening rate at higher temperatures
Banana Ripening

Four major factors:-
• Relative Humidity (RH) control
• Ethylene gas
• Temperature control (pulp temperature)
• Air circulation
Low relative humidity accelerates water loss and appearance of physical damage symptoms on banana.

Approx. daily pulp temperature desired for bananas scheduled to complete ripening in specified number of days

<table>
<thead>
<tr>
<th>Ripening schedule</th>
<th>Fruit temperature (°C) on day -</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 1</td>
</tr>
<tr>
<td>4 days</td>
<td>18</td>
</tr>
<tr>
<td>5 days</td>
<td>17</td>
</tr>
<tr>
<td>6 days</td>
<td>17</td>
</tr>
<tr>
<td>7 days</td>
<td>16</td>
</tr>
</tbody>
</table>

Green bananas → Load into ripening room → Refrigerate for 12-16 hrs until pulp (core) temp. reaches 15-17°C, 90%RH

Close room and control atmosphere @15-17°C (3-4 days), 75%RH

Vent ethylene

Discharge Ethylene into room to 0.1% concentrate (1 day)
Mango

<table>
<thead>
<tr>
<th>Mango</th>
<th>Max. transit (Days)</th>
<th>Opt. transit temp. (°C)</th>
<th>Highest freezing temp. (°C)</th>
<th>Recommended container temp. (°C)</th>
<th>SAR</th>
<th>Air Change (cfm)</th>
<th>Ethylene Production Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mango</td>
<td>14-25</td>
<td>13.3</td>
<td>-0.9</td>
<td>12.2-13.3</td>
<td>85-90</td>
<td>20</td>
<td>Medium</td>
</tr>
</tbody>
</table>

Export Fresh Mangos Process Flow

1. Hand harvest into baskets, nets or buckets
2. Remove latex
3. Transfer to field lug boxes (shaded)
4. Hydrocooling
5. Rest 12-24 hrs at ambient temp.
6. Pre-rinse for hot water treatment, pre-wash defect
7. Portable water brush & rinse
8. Dump into chlorinated water
9. Move pallets to cold storage room prior to shipping
10. Forced Air cooling
11. Palletizing & strapping
12. Pack fruit into cartons by size
13. Grade according to buyer requirements
14. Transfer to packinghouse
15. Transfer to field lug boxes
16. Portable water brush & rinse
17. Dump into chlorinated water
18. Move pallets to cold storage room prior to shipping
19. Forced Air cooling
20. Palletizing & strapping
21. Pack fruit into cartons by size
22. Grade according to buyer requirements
23. Transfer to packinghouse
24. Transfer to field lug boxes
25. Portable water brush & rinse
26. Dump into chlorinated water
27. Move pallets to cold storage room prior to shipping
28. Forced Air cooling
29. Palletizing & strapping
30. Pack fruit into cartons by size
31. Grade according to buyer requirements
32. Transfer to packinghouse
33. Transfer to field lug boxes
34. Portable water brush & rinse
35. Dump into chlorinated water
36. Move pallets to cold storage room prior to shipping
37. Forced Air cooling
38. Palletizing & strapping
39. Pack fruit into cartons by size
40. Grade according to buyer requirements
41. Transfer to packinghouse
42. Transfer to field lug boxes
43. Portable water brush & rinse
44. Dump into chlorinated water
45. Move pallets to cold storage room prior to shipping
46. Forced Air cooling
47. Palletizing & strapping
48. Pack fruit into cartons by size
49. Grade according to buyer requirements
50. Transfer to packinghouse
51. Transfer to field lug boxes
52. Portable water brush & rinse
53. Dump into chlorinated water
54. Move pallets to cold storage room prior to shipping
55. Forced Air cooling
56. Palletizing & strapping
57. Pack fruit into cartons by size
58. Grade according to buyer requirements
59. Transfer to packinghouse
60. Transfer to field lug boxes
61. Portable water brush & rinse
62. Dump into chlorinated water
63. Move pallets to cold storage room prior to shipping
64. Forced Air cooling
65. Palletizing & strapping
66. Pack fruit into cartons by size
67. Grade according to buyer requirements
68. Transfer to packinghouse
69. Transfer to field lug boxes
70. Portable water brush & rinse
71. Dump into chlorinated water
72. Move pallets to cold storage room prior to shipping
73. Forced Air cooling
74. Palletizing & strapping
75. Pack fruit into cartons by size
76. Grade according to buyer requirements
77. Transfer to packinghouse
78. Transfer to field lug boxes
79. Portable water brush & rinse
80. Dump into chlorinated water
81. Move pallets to cold storage room prior to shipping
82. Forced Air cooling
83. Palletizing & strapping
84. Pack fruit into cartons by size
85. Grade according to buyer requirements
86. Transfer to packinghouse
87. Transfer to field lug boxes
88. Portable water brush & rinse
89. Dump into chlorinated water
90. Move pallets to cold storage room prior to shipping
91. Forced Air cooling
92. Palletizing & strapping
93. Pack fruit into cartons by size
94. Grade according to buyer requirements
95. Transfer to packinghouse
96. Transfer to field lug boxes
97. Portable water brush & rinse
98. Dump into chlorinated water
99. Move pallets to cold storage room prior to shipping
100. Forced Air cooling
101. Palletizing & strapping
102. Pack fruit into cartons by size
103. Grade according to buyer requirements
104. Transfer to packinghouse
105. Transfer to field lug boxes
106. Portable water brush & rinse
107. Dump into chlorinated water
108. Move pallets to cold storage room prior to shipping
109. Forced Air cooling
110. Palletizing & strapping
111. Pack fruit into cartons by size
112. Grade according to buyer requirements
113. Transfer to packinghouse
114. Transfer to field lug boxes
115. Portable water brush & rinse
116. Dump into chlorinated water
117. Move pallets to cold storage room prior to shipping
118. Forced Air cooling
119. Palletizing & strapping
120. Pack fruit into cartons by size
121. Grade according to buyer requirements
122. Transfer to packinghouse
123. Transfer to field lug boxes
124. Portable water brush & rinse
125. Dump into chlorinated water
126. Move pallets to cold storage room prior to shipping
127. Forced Air cooling
128. Palletizing & strapping
129. Pack fruit into cartons by size
130. Grade according to buyer requirements
131. Transfer to packinghouse
132. Transfer to field lug boxes
133. Portable water brush & rinse
134. Dump into chlorinated water
135. Move pallets to cold storage room prior to shipping
136. Forced Air cooling
137. Palletizing & strapping
138. Pack fruit into cartons by size
139. Grade according to buyer requirements
140. Transfer to packinghouse
141. Transfer to field lug boxes
142. Portable water brush & rinse
143. Dump into chlorinated water
144. Move pallets to cold storage room prior to shipping
145. Forced Air cooling
146. Palletizing & strapping
147. Pack fruit into cartons by size
148. Grade according to buyer requirements
149. Transfer to packinghouse
150. Transfer to field lug boxes
151. Portable water brush & rinse
152. Dump into chlorinated water
153. Move pallets to cold storage room prior to shipping
154. Forced Air cooling
155. Palletizing & strapping
156. Pack fruit into cartons by size
157. Grade according to buyer requirements
158. Transfer to packinghouse
159. Transfer to field lug boxes
160. Portable water brush & rinse
161. Dump into chlorinated water
162. Move pallets to cold storage room prior to shipping
163. Forced Air cooling
164. Palletizing & strapping
165. Pack fruit into cartons by size
166. Grade according to buyer requirements
167. Transfer to packinghouse
168. Transfer to field lug boxes
169. Portable water brush & rinse
170. Dump into chlorinated water
171. Move pallets to cold storage room prior to shipping
172. Forced Air cooling
173. Palletizing & strapping
174. Pack fruit into cartons by size
175. Grade according to buyer requirements
176. Transfer to packinghouse
177. Transfer to field lug boxes
178. Portable water brush & rinse
179. Dump into chlorinated water
180. Move pallets to cold storage room prior to shipping
181. Forced Air cooling
182. Palletizing & strapping
183. Pack fruit into cartons by size
184. Grade according to buyer requirements
185. Transfer to packinghouse
186. Transfer to field lug boxes
187. Portable water brush & rinse
188. Dump into chlorinated water
189. Move pallets to cold storage room prior to shipping
190. Forced Air cooling
191. Palletizing & strapping
192. Pack fruit into cartons by size
193. Grade according to buyer requirements
194. Transfer to packinghouse
195. Transfer to field lug boxes
196. Portable water brush & rinse
197. Dump into chlorinated water
198. Move pallets to cold storage room prior to shipping
199. Forced Air cooling
200. Palletizing & strapping
201. Pack fruit into cartons by size
202. Grade according to buyer requirements
203. Transfer to packinghouse
204. Transfer to field lug boxes
205. Portable water brush & rinse
206. Dump into chlorinated water
207. Move pallets to cold storage room prior to shipping
208. Forced Air cooling
209. Palletizing & strapping
210. Pack fruit into cartons by size
211. Grade according to buyer requirements
212. Transfer to packinghouse
213. Transfer to field lug boxes
214. Portable water brush & rinse
215. Dump into chlorinated water
216. Move pallets to cold storage room prior to shipping
217. Forced Air cooling
218. Palletizing & strapping
219. Pack fruit into cartons by size
220. Grade according to buyer requirements
221. Transfer to packinghouse
222. Transfer to field lug boxes
223. Portable water brush & rinse
224. Dump into chlorinated water
225. Move pallets to cold storage room prior to shipping
226. Forced Air cooling
227. Palletizing & strapping
228. Pack fruit into cartons by size
229. Grade according to buyer requirements
230. Transfer to packinghouse
231. Transfer to field lug boxes
232. Portable water brush & rinse
233. Dump into chlorinated water
234. Move pallets to cold storage room prior to shipping
235. Forced Air cooling
236. Palletizing & strapping
237. Pack fruit into cartons by size
238. Grade according to buyer requirements
239. Transfer to packinghouse
240. Transfer to field lug boxes
241. Portable water brush & rinse
242. Dump into chlorinated water
243. Move pallets to cold storage room prior to shipping
244. Forced Air cooling
245. Palletizing & strapping
246. Pack fruit into cartons by size
247. Grade according to buyer requirements
248. Transfer to packinghouse
Ripen Mangos Process Flow

Ripen Mangos
Clean & Rinse
Peel
Cut
Freeze (Air Blast, Tunnel)
Vacuum Pack
Cold Storage
Freeze Dry
Pack

CONTROL ATMOSPHERE (CA)

Control atmosphere (CA)
Control atmosphere (CA)

Membrane type
Nitrogen Generator

PSA type
Nitrogen Generator

Control atmosphere (CA)

VPSA type
Oxygen Absorbers

Carbon Dioxide
Absorbers

Control atmosphere (CA)

Ethylene Scrubber
Control atmosphere (CA)

CA Door

Control atmosphere (CA)

Analyzer

Control atmosphere (CA)

Air bags to equilibrate pressure in controlled atmosphere rooms
FISHERY

Fishery
- Freezer Trawler
- Fish
- Surimi
- Shrimp
- Freezing Technology

Frozen fish

<table>
<thead>
<tr>
<th>Species (fish, shellfish)</th>
<th>Min. Shelf life (days)</th>
<th>Opt. trans temp (°C)</th>
<th>Max. freezing temp (°C)</th>
<th>Vent setpoint temp (°C)</th>
<th>Reccomm. & RH</th>
<th>Air Change (cfm)</th>
<th>Ethylene Production Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatty (carp, salmon, sardine, tuna)</td>
<td>120-140</td>
<td>-23.3 to -20.5</td>
<td>-23.3 to -20.5</td>
<td>Vents closed</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lean (cod, pollock, perch)</td>
<td>240-360</td>
<td>-23.3 to -20.5</td>
<td>-23.3 to -20.5</td>
<td>Vents closed</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrimp, Scallops</td>
<td>120-360</td>
<td>-23.3 to -20.5</td>
<td>-23.3 to -20.5</td>
<td>Vents closed</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crab, lobster</td>
<td>120-360</td>
<td>-23.3 to -20.5</td>
<td>-23.3 to -20.5</td>
<td>Vents closed</td>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Freezer Trawler

Ice Machine for trawler
• chip ice from freshwater
• chip ice from fresh or seawater
• liquid ice from seawater

Fish Processing
Fish Processing

Receiving (Fresh or Frozen Fish)

- Unpacking
- Thawing (in water)
- Washing & Grading
- Skinning
- Evisceration & removal of valuable by-products (liver, milt)
- Filleting
- Washing

Rejected fish
- Skin
- Guts, head
- Bones, off-cuts reject

By-product

- By-product material
- Fish meal & fish oil Process
- Dehydrating
- Packing

External Packing

- By-product material

Fish Processing

Fish Fillet

Fish Finger

Surimi

Raw Material
- Chilled and washed in ice water (6°C)
- Heading and Gutting
- washed in ice water (6°C)

Deboner
- Leaching
- Hydraulic press
- Pressed Meat

Strainer/Refiner
- Mixing
- Packing
- Contact freezing (-40°C)

Packing
- Cold storage (-18°C to -20°C)
Shrimp Processing

Harvest → Store → De-head → Grade → Peel → Cook → I.Q.F. → Glaze → Weigh → Pack → Store → Ship

Place in block tray → Block freeze → Knock out → Weigh → Trays pack → Freeze → Overwrap → Dust- Batter → Bread → Fry → I.Q.F.

Freezing Technology

- Brine Freezer
- Contact Plate Freezer
- Spiral Freezer
- Tunnel Freezer
- Fluidized Bed Freezer
- Cryogenic Freezer
Cryogenic Freezer

Industrial Refrigeration
For Food Preservation

Q & A

For more information please email to
apichit.lpana@itc-group.co.th
Tel: +66-2-374-4640

Thank You
For Your Attention.

شكري
Khun Ka